Translate

miércoles, 19 de junio de 2013

LA GEL-ELECTROFORESIS

El problema de encontrar, separar y analizar los fragmentos de ADN correspondiente a   un gen específico se logró resolver sobre la base de los estudios de Linus Pauling que demostraron que las moléculas migran a distintas velocidades hacia los polos magnéticos: se colocan porciones de ADN sobre un gel de agarosa2 y se les permite que migren hacia los polos del campo magnético. La senda seguida por el ADN y las manchas formadas se tornan visibles en una película de rayos X como el código de bandas de un producto en el supermercado.

La electroforesis es una técnica habitual en el laboratorio clínico. Permite separar especies químicas (ácidos nucleicos o proteínas) a lo largo de un campo eléctrico en función de su tamaño y de su carga eléctrica. Los ácidos nucleicos, ADN y ARN, tienen por naturaleza carga negativa. Si ponemos fragmentos del ADN extraído de una muestra biológica sobre un soporte poroso (gel) y aplicamos un campo eléctrico, se producirá la migración diferencial de los fragmentos a través de los poros de la matriz. La tinción del gel con bromuro de etidio, que es una sustancia fluorescente que se intercala en la molécula de ADN, y la exposición con luz ultravioleta, permite observar el resultado de ésta migración.



BIOCHIPS


Los últimos avances en biología molecular, especialmente en genética y genómica, ha llevado a la aparición de numerosas técnicas experimentales. Entre estas herramientas destacan los biochips, que permiten conocer mutaciones genéticas en los pacientes. De este modo, la comunidad científica dispondrá del material adecuado para afrontar el reto que se le plantea tras haberse completado la primera fase del Proyecto Genoma: estudiar la función de los genes, las diferencias genéticas individuales y su incidencia en el desarrollo de las enfermedades.


Un biochip es un dispositivo a pequeña escala, análogo a un circuito integrado, ensamblado o usado para analizar moléculas orgánicas asociadas con los organismos vivientes.

En teoría un biochip es un pequeño mecanismo construido de grandes moléculas orgánicas, tales como las proteínas, capaz de desempeñar las funciones de una computadora(almacenamiento de datos, procesamiento). Otro tipo de biochip, es un pequeño aparato capaz de realizar rápidas reacciones bioquímicas en escala reducida, con el propósito de identificar secuencias genéticas, agentes contaminantes, toxinas aerotransportables u otros elementos bioquímicos.

TÉCNICA DE LA PCR

También existen métodos para amplificar una determinada secuencia o fragmento de ADN. La más conocida es la técnica de la reacción en cadena de la polimerasa PCR. Así 
se consigue multiplicar un determinado fragmento de ADN millones de veces para poder tener una cantidad suficiente para estudiarlo. Sin esta técnica serían imposibles los estudios de ADN para el reconocimiento de la paternidad o en caso de delito, pues la cantidad de ADN presente en las células es tan pequeña, del orden de picogramos5, que se necesitaría una gran cantidad de material celular para tener una cantidad apreciable de ADN. Por su lado, para la amplificación del gen.



ADN RECOMBINANTE

Esta técnica permite aislar un gen de un organismo, para su posterior manipulación e inserción en otro diferente. De esta manera podemos hacer que un organismo animal, vegetal, bacteria, hongo, o un virus, produzcan una proteína que le sea totalmente extraña.

Se emplea normalmente para la producción de proteínas en gran escala, ya que podemos hacer que una bacteria produzca una proteína humana y lograr una superproducciónDe una manera muy simple podemos decir que "cortamos" un gen humano y se lo "pegamos" al ADN de una bacteria; si por ejemplo es el gen que regula la fabricación de insulina, lo que haríamos al ponérselo a una bacteria es "obligar" a ésta a que fabrique la insulina.

INGENIERIA GENETICA

 La ingeniería genética puede definirse como "La manipulación deliberada de la información genética, con miras al análisis genético o al mejoramiento de una especie". La generación del ADNr puede tener diferentes fines, el más común es determinar la función o rol que tendría un gen. Por ejemplo, si asumimos que tenemos un fragmento de ADN y creemos que es responsable de la producción del color azul en flores, podemos insertar ese fragmento en una planta que produce flores blancas. Si al dejar crecer esta planta genera flores azules, entonces sabremos que ese gen es el ?culpable? del color azul. Las aplicaciones más comunes de esta tecnología la encontramos en el área de la farmacología. Muchas proteínas, que son necesarias para el buen funcionamiento del hombre (por ejemplo insulina, en el caso de diabéticos) se pueden producir en microorganismos a gran escala y bajo costo. Una ventaja enorme es que por esta metodología tendremos la insulina humana, con una gran pureza. Hoy en día se sintetizan más de 200 fármacos por medio de ADNr.
Según French Anderson (60 años), pionero de la terapia genética, "ya existe toda la base científica necesaria, pero no tendremos hasta dentro de 10 o 5 años la eficiencia y seguridad para llevar a cabo transferencias genéticas en forma ética".

La ingeniería genética tiene un gran potencial en las diferentes áreas de la biotecnología. Ya mencionábamos el caso de la insulina, beneficio directo para el hombre. Un área de uso y que representa sólo el 10% de la tecnología del ADNr, es en el sector agrícola. Es posible obtener plantas que posean una característica de interés, por ejemplo plantas que producen una toxina para insectos (maíz Bt), arroz enriquecido con vitamina (arroz dorado), cultivos que en el futuro sean capaces de actuar como biorreactores y producir fármacos, etc. Desde 1996, se están comercializando plantas genéticamente modificadas en el mundo, especialmente en Estados Unidos, Argentina, Brasil y Canadá.

En el área pecuaria, ya hay algunos ejemplos de animales genéticamente modificados y lo mismo en el caso de los peces, donde hay mucha investigación, pero todavía no se comercializan.